Speaker Identification using Frequency Dsitribution in the Transform Domain
نویسنده
چکیده
In this paper, we propose Speaker Identification using the frequency distribution of various transforms like DFT (Discrete Fourier Transform), DCT (Discrete Cosine Transform), DST (Discrete Sine Transform), Hartley, Walsh, Haar and Kekre transforms. The speech signal spoken by a particular speaker is converted into frequency domain by applying the different transform techniques. The distribution in the transform domain is utilized to extract the feature vectors in the training and the matching phases. The results obtained by using all the seven transform techniques have been analyzed and compared. It can be seen that DFT, DCT, DST and Hartley transform give comparatively similar results (Above 96%). The results obtained by using Haar and Kekre transform are very poor. The best results are obtained by using DFT (97.19% for a feature vector of size 40). Keywords-Speaker Identification; DFT; DCT; DST; Hartley; Haar; Walsh; Kekre’s Transform.
منابع مشابه
Identification of mineralization features and deep geochemical anomalies using a new FT-PCA approach
The analysis of geochemical data in frequency domain, as indicated in this research study, can provide new exploratory informationthat may not be exposed in spatial domain. To identify deep geochemical anomalies, sulfide zone and geochemical noises in Dalli Cu–Au porphyry deposit, a new approach based on coupling Fourier transform (FT) and principal component analysis (PCA) has beenused. The re...
متن کاملPrediction of mineral deposit model and identification of mineralization trend in depth using frequency domain of surface geochemical data in Dalli Cu-Au porphyry deposit
In this research work, the frequency domain (FD) of surface geochemical data was analyzed to decompose the complex geochemical patterns related to different depths of the mineral deposit. In order to predict the variation in mineralization in the depth and identify the deep geochemical anomalies and blind mineralization using the surface geochemical data for the Dalli Cu-Au porphyry deposit, a ...
متن کاملSpeaker Identification Using Admissible Wavelet Packet Based Decomposition
Mel Frequency Cepstral Coefficient (MFCC) features are widely used as acoustic features for speech recognition as well as speaker recognition. In MFCC feature representation, the Mel frequency scale is used to get a high resolution in low frequency region, and a low resolution in high frequency region. This kind of processing is good for obtaining stable phonetic information, but not suitable f...
متن کاملHarmonic Modeling of Inrush Current in Core Type Power Transformers Using Hartley Transform
This paper presents a new method for evaluation and simulation of inrush current in various transformers using operational matrices and Hartley transform. Unlike most of the previous works, time and frequency domain calculations are conducted simultaneously. Mathematical equations are first represented to compute the inrush current based on reiteration and then Hartley transform is used to stud...
متن کاملNew Filter Structure based on Admissible Wavelet Packet Transform for Text-Independent Speaker Identification
Identical acoustic features like Mel frequency cepstral Coefficients (MFCC)and Linear predictive cepstral coefficients (LPCC) are being widely used for different tasks like speech recognition and speaker recognition, whereas the requirement of speaker recognition is different than that of speech recognition. In MFCC feature representation, the Mel frequency scale is used to get a high resolutio...
متن کامل